منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملInverse Eigenvalue Problems
A collection of inverse eigenvalue problems are identi ed and classi ed according to their characteristics Current developments in both the theoretic and the algorithmic aspects are summarized and reviewed in this paper This exposition also reveals many open questions that deserves further study An extensive bibliography of pertinent literature is attached
متن کاملStructured Inverse Eigenvalue Problems
An inverse eigenvalue problem concerns the reconstruction of a structured matrix from prescribed spectral data. Such an inverse problem arises in many applications where parameters of a certain physical system are to be determined from the knowledge or expectation of its dynamical behavior. Spectral information is entailed because the dynamical behavior often is governed by the underlying natur...
متن کاملa new inexact inverse subspace iteration for generalized eigenvalue problems
in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملOrthogonal Functions and Inverse Eigenvalue Problems
The Newton polygon, an elementary geometric construction first devised by Sir Isaac Newton, has been often used in the context of perturbation theory as a tool for deriving explicit first-order eigenvalue perturbation expansions. On one hand, this usually gives useful information on the directions in which perturbed eigenvalues move, something which is crucial in several practical situations wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1977
ISSN: 0024-3795
DOI: 10.1016/0024-3795(77)90039-8