Inverse eigenvalue problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Inverse Eigenvalue Problems

A collection of inverse eigenvalue problems are identi ed and classi ed according to their characteristics Current developments in both the theoretic and the algorithmic aspects are summarized and reviewed in this paper This exposition also reveals many open questions that deserves further study An extensive bibliography of pertinent literature is attached

متن کامل

Structured Inverse Eigenvalue Problems

An inverse eigenvalue problem concerns the reconstruction of a structured matrix from prescribed spectral data. Such an inverse problem arises in many applications where parameters of a certain physical system are to be determined from the knowledge or expectation of its dynamical behavior. Spectral information is entailed because the dynamical behavior often is governed by the underlying natur...

متن کامل

a new inexact inverse subspace iteration for generalized eigenvalue problems

in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Orthogonal Functions and Inverse Eigenvalue Problems

The Newton polygon, an elementary geometric construction first devised by Sir Isaac Newton, has been often used in the context of perturbation theory as a tool for deriving explicit first-order eigenvalue perturbation expansions. On one hand, this usually gives useful information on the directions in which perturbed eigenvalues move, something which is crucial in several practical situations wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1977

ISSN: 0024-3795

DOI: 10.1016/0024-3795(77)90039-8